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T r a n s p o r t  equations a r e  der ived  for  a the rmal -d i f fus ion  co lumn containing a mul t icomponent  
mo lecu l a r  mixture .  

The exis t ing  theory  of the rmal -d i f fus ion  columns [1] is r e s t r i c t e d  to b inary  mix tu re s ;  a genera l iza t ion  
to mul t icomponent  mix tu re s  [2] r e l a t e s  only to the pa r t i cu l a r  case  of isotope mix tu re s .  I t  is an open question 
whether  the theory  is appl icable to any liquid or  gaseous mix ture  containing an a r b i t r a r y  number  of compo-  
nents .  

Here  we employ  general  phenomenological  a rguments  in a reasonab ly  r igorous  d iscuss ion  of t he rma l  d i f -  
fusion in any mix ture ;  t r a n s p o r t  equations a r e  der ived  for  a thermal--diffusion column and appl ica t ionto  p a r t i c -  
u lar  sepa ra t ions  a r e  d iscussed .  

1. Diffusion Fluxes  in the P r e s e n c e  of T h e r m a l  Diffusion in a Mult icomponent  System.  Reasonably  
genera l  a rguments  provide an expres s ion  fo r  the diffusion flux of the k- th  component  in a s y s t e m  containing 
M components  as  [3] 

M - - I  

Ok (v~ - -  v) = - -  p " X  D~ivcl --- pDrV In T. (1) 
i ~ l  

However ,  this equation is not by any means  convenient  for  p rac t i ca l  pu rposes .  The diffusion flux is usual ly  
wr i t ten  in a r a t h e r  different  fo rm for  a binary s y s t e m ,  n a m e l y  in t e r m s  of the the rmal -d i f fus ion  constant  cz: 

Pi (vt - -  v) = - -  oD [VCi + ~zc, ( t  c,) V In T]. (2) 

The advantages  of this a r e  f i r s t ly  that it is poss ib l e  to define the concentra t ion dependence of the t h e r m a l - d i f -  
fusion t e r m  in (2) (this dependence can be neglected in cer ta in  instances) .  Secondly, this constant  is to be 
p r e f e r r e d  as a m e a n s  of desc r ib ing  t he rm a l  diffusion,  s ince  it  has  a s imple  physica l  meaning  and can readi ly  
be der ived  f r o m  s t eady- s t a t e  m e a s u r e m e n t s  on the concentrat ion and t e m p e r a t u r e  gradients .  The following 
equation appl ies  fo r  this s ta te :  

VCl = - -  cw,-(l - -c! )V In T. (3) 

Equation (2) is readi ly  genera l ized  to any number  of components ;  we define the the rmal -d i f fus ion  constants  
for  a mul t icemponent  s y s t e m  as the following quant i t ies :  

~ = ak - -  as ,  ( 4 )  

where  the a k have the following s imple  re la t ion to the s t eady - s t a t e  concentra t ion and t e m p e r a t u r e  gradients  
m e a s u r e d :  

V Inch = - -  akv In T. (5) 

Equations (4) and (5) become (3) for  a binary sys t em.  Also ,  (5) impl ies  

M 

~.~ c~a~ = O. (6) 

We see f r o m  (4) and (6) that  only M = 1 is independent out of all  the aki ,  and we the re fo re  note the fol low- 
ing obvious f ea tu re s :  
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r = - - a ~ ,  (7) 

~ j  + con = ah~, (8) 

(9) 

zero.  
In the steady state ,  there  a re  no diffusions fluxes,  and therefore  the right side in (1) can be equated to 

This produces the following resul t  with (5): 

Then (4) and (6) t r ans fo rm the l a t t e r  to 

D r = '~  Dh~c~ai. (10) 
i=l 

M--I bi 
D T = '~ D,, ~ r 

I=I i ' l l  

We substitute (11) into (1) to get 

" M--1 M 

i=l i=1 

This  is a generalization of (2) to any number of components;  this can somet imes be simplified. 
case of (12) is,  for example,  

M 

v) = --pD E ,n r ) ,  
% / 

I=1 

(11) 

(12) 

A par t icu lar  

(13) 

which Jones derived for an isotope mixture [4]. Jones derived this f rom Hellund's kinetic theory for gas mix-  
tures  [5, 6]. As we have derived (12) purely phenomenologicaUy, one concludes that it applies in general for  
any liquid or  gaseous mixture.  

An obvious relation is 

M - - l  

CM ----- l ~ % C1, 
]=l 

and this with (7) and (8) allows us to r epresen t  (12) as 

bl--I M~I 
D., + c, v,n T] 

i = l  / = l  

(i4) 

(15) 

The diffusion-flux representa t ions  of (12) and (15) are  the mos t  convenient when the thermal-diffusion 
constants are  independent of the concentrat ions;  the molecular  theory of mixtures  implies that this is so if 
the radial  distributions are  independent of concentration [7]. This applies par t icu lar ly  to isotopic mixtures ,  
and also to regular  molecular  solutions,  since it is found [8] that the radial functions of a regular  solution are  
independent of concentration. Clear ly ,  this condition is met  if the pa ramete r s  of the molecules do not differ 
too substantially. If the thermal-dif fusion constant for the component pair  k and i is independent of concent ra-  
tion, it is then also independent of the other components in the mixture and is actually equal to the thermal -d i f -  
fusion constant for  a binary mixture of molecular  species k and i. However,  (12) and (15) are more  convenient 
than (1) even when the r~ki cannot be taken as independent of concentration,  since the thermal-diffusion con- 
stants can be derived direct ly  by exper iment ,  in contras t  to the thermal-diffusion coefficients. 

2. Diffusion Fluxes in Different F r a m e s  of Reference.  The fluxes given by (12) are  defined in a f rame 
of reference  linked to the center  of mass ;  the concentrat ion has the meaning of a mass  fraction. A different 
definition of the diffusion fluxes has somet imes been used (in the mole -cen te r  system).  In that case ,  the con- 
centrat ions are  expressed  as molar  fract ions x k, which are c lear ly  related to the mass  values 

c~ = rn~ x~, (16) 
m 

where m is the mean mola r  mass  of the mixture ,  i .e . ,  
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M 

m = ~ ,  rn;x i. (17) 
i ~ l  

One the re fo re  has to examine how the t r anspo r t  coefficients a l t e r  on going f r o m  one s y s t e m  to another .  It  is 
readi ly  seen f rom (4), (5), and (16) that  the thermal -d i f fus ion  constants a r e  unal tered on going f r o m  m a s s  con- 
centra t ions  to m o l a r  ones ,  which is an advantage of these constants  over  the the rmal -d i f fus ion  coeff icients .  
The cor responding  t r ans fo rma t ion  of the diffusion coefficients may  be examined by r e f e r ence  to the pure  di f -  
fusion t e r m s  in the f luxes:  

M--I  

Ph (vk - -v )  = - - p  X Dk,vci, (18) 

M--I 
nh (vk - -  u) = ~ n ~_~ D~Nxi,  (19) 

i = l  

where u is the veloci ty  re la t ive  to the center  of mo le s ,  i .e . ,  

M 

u = X x~vt" (20) 
i ~ l  

Appropr ia te  s teps  with (16)-(20) give the following re la t ionship  between the diffusion coefficients in the two 
f r a m e s  of r e f e r ence :  

M-1 mi--m~vt ~ mzxl �9 (21) 1 1 1 '  Dj i Di t D~ = m i DI,.: ~ xk - Dhl - -  Xu -~ 1 1 
,=1 mj m ~ - ~ h  .,=t mj 

We see that  in general  the diffusion coefficients in the two s y s t e m s  have a ve ry  complex re la t ion;  in cer ta in  
pa r t i cu l a r  e a se s ,  these coeff icients  a re  invar iant  under  change in the f r a m e  of r e f e r e n c e ,  which applies  
pa r t i cu la r ly  for  a r b i t r a r y  s y s t e m s ,  where  a single diffusion coefficient  appl ies .  This  follows f r o m  (21) for  
M = 2. The diffusion coefficients  for  mul t icomponent  isotope mix tu res  a r e  a lso  invar iant .  

The only nontr ivia l  case  of invar iance  in the diffusion coefficients  for  a mul t icomponent  mo lecu l a r  m i x -  
ture  is an infinitely dilute solution of s e v e r a l  subs tances  in a solvent;  a solution can be taken as infinitely dilute 
if the concentra t ions  x k a re  much less  than 1. In that case ,  one can neglect  the concentra t ion dependence of 
the diffusion coeff ic ients ,  and the re fo re  the Did and D~i m a t r i c e s  a re  diagonal and equal. In other  cases  the 
diffusion Coefficients a r e  dependent on the choice of f r a m e  of r e f e r e n c e ,  and the re fo re  one has to s tate  not 
only the magnitudes of the diffusion coefficients but a l so  the f r a m e  of r e f e r ence  for  which these a re  defined for  
any molecu la r  mixture  containing m o r e  than two components.  In pa r t i cu l a r ,  the equations for  the diffusion 
fluxes in the p r e se nce  of t he rm a l  diffusion take the following f o r m  in the m o l e - c e n t e r  sy s t em:  

M--I  M 

nh(v~--u) = - - n  X D;~i( Vx'  + X, ~ x , ~ , , v l n  r ) ,  (22) 
i = 1  ]~1  

where  the re la t ion  between D~d and Did is given by (21). 

3. T r a n s p o r t  Equations for  a Thermal -Di f fus ion  Column. Jones  and F u r r y  used (2) to der ive  the t r a n s -  
por t  equations for  a binary mix tu re  in a the rmal -d i f fus ion  column [1]. A detai led der ivat ion of this equation 
is given a lso  in [9]. The a rguments  used in that der ivat ion can be extended to any number  of components ,  
but it is then n e c e s s a r y  to s t a r t  f r o m  the diffusion-flux equations of (12). We then get the following t r a n s p o r t  
equations:  

M M ~ I  

q3Ck.J~ Ck ~ ' ~  Hl t iCl__ ~'~( lr " C~Ct (23) Tk 

i==l l=~] 

where 

Hkl = tto~ki; 
(24) 
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Ho - -  g--~PhS~ (AT)2B " (25) 
6!UP ' 

Kk~ = K ~  ") ~:K(~); (26) 

K~? = g~PaS' (AT)2B (D-')se; (27) 
9!~iz �9 

K ( d )  = B~pDkl .  (28) tti 

Here (D-1)ki indicates the element  in the k- th  row and i- th column after  inversion of the diffusion-coefficient 
mat r ix  for  the cen t e r -o f -mass  sys tem.  

F r o m  (7), (8), (14), and (24) we rewri te  (23) as 

M--I .M--t 

Oc~ (29) �9 

i ~ l  i ~ l  

Unfortunately, the s t ruc ture  of the Kki mat r ix  is unknown in the general case ,  since the s t ructure  of the 
diffusion-coefficient matr ix  is also unknown. It is therefore  impossible to obtain a general solution by means 
of (23) and (29) if no additional assumptions are made about the diffusion coefficients. 

Equations (23) and (29) have been writ ten for the mass  concentrat ions,  and therefore  r k has the meaning 
of the mass flux of the k-th component through the column cross  section,  while ~ i s  the mass  flux of the entire 
mixture through the c ross  section, i .e. ,  

M 

(~ = ~ ~" (30) 

In some instances it is convenient to convert  to the molar  concentrations in the t ranspor t  equations, for this 
enables one, for example,  to l inearize these equations for dilute solutions. It is best to replace T k by T~ on 
going to the molar  concentrat ions,  and this is the flux in moles of the k-th component through the cross  s ec -  
tion. Clear ly ,  the following relationship applies:  

Correspondingly,  

T: = ~k . (31) 
m k  

M 

(32) 
t '~ l  

is the number of moles of the entire mixture pass ing through the section of the column in unit time. Then (16) 
and (30)-(32) allow us to relate this quantity as follows to the mass  charac te r i s t i c s :  

M--I 

o - _ + v ( ,  ,) m mM (33) 
i = l  

in the nonstat ionary case ,  ~ and a' may be dependent on z,  since then the mass and molar  concentrations in 
general  va ry  with t ime; however,  the quantities of pract ical  value are  a(z) and a(z ' ) ,  namely at the end of the 
column (z = L, at the sampling point). An obvious boundary condition is 

f f l  - -  ~Ct)z=L = 0, (34) 

and f rom (33) we get 

. '  (L) = (~(L) 
m (L) 

Then ~(L) and a' (L) are simply the mass  and molar  amounts tapped off. 

(35) 
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Then (4), (6), (14), (16), (24), (31), and (33)allow us to convert  to molar  c h a r a c t e r i s t i c s i n ( 2 3 ) , a n d t h e  
t ranspor t  equations become 

w h e r e  

M M - - 1  

"~ i=I 

H~t = H;aki; (37) 

and the K~i a re  re la ted to the Kki as follows: 

M - - !  

H0 = # ~  , ( 3 s )  
E/ 

m, mM m z re,x, [ l-~Kh,--Xh : 1 1 
, = ,  Lm~ ~=, Aj m-~ Ks~ �9 (39) 

This relat ionship takes the s imples t  fo rm for  a binary mixture:  

K 
K '  

n~ 

Then (7), (8), (14), (16), (t7), and (37) converts  (36) to 

(40) 

M - - I  M - - 1  
' 0 X  i 

V (ziMxi) - -  Z K~, (41) T~ = 6'xk + Hoxk (%M- 
i = 1  i = t  

If the diffusion-coeff icient  mat r ix  is known, we can use (29) and (41) d i rec t ly  to examine s teady-s ta te  
p r o c e s s e s  in the column, but these equations must  be supplemented with appropriate  equations of continuity 
for  t rans ient  s ta tes ,  and these take the following fo rms  for  the mass and molar  concentrat ions respec t ive ly :  

p B 6 0 c ~  + O~ =,0, (42) 
Ot az 

0~ nB6 ~x~_ -F 
Ot Oz 

_ _  = O. ( 4 3 )  

The following is an important  point relat ing to the l inearizat ion of (29) and (41) for  small  values of c k 
and Xk; let  the main component (solvent) be M, while the concentrat ions of the other  components are  low 
enough for  us to take only the l inear  t e r m s  in the equations. In that case,  the diffusion-coeff icient  mat r ix  
may  be taken as diagonal, and 

D~: = D~i = Dffa)6ki, (44) 

and the re fo re  (17), (26)-(28), (39) give us that 

K~ = mK~i = K(kM)6~i, (45) 

w h e r e  

K(km= g~367(AT)2B , B6pD(d m. (46) 
9hl~D(hM) -~- 

Then (29) and (41) become 

T~ = gr + Ho%~ck ~ K~ M) Ock _ (47) 
Oz " 

�9 ~ = ~'xk q- Ho~hMX~-- I K ~  Oxk (48) 
rn Oz 
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An impor tan t  point is that  (47) and (48) a r e  not always equivalent ,  because the conditions of sma l lness  for  c k 
and x k a re  t hemse lves  not a lways equivalent .  

B 

Ck 
Dki 

DkT 

D 
D(M) 
k 

g 

M 

m k 
m 

n k 
T 
u 
AT 

U 

V 

Xk 
Z 

6 

Ski 

Pk 
P 

(T v 

Tk 
"k 

N O T A T I O N  

is the width of slot ;  
is the m a s s  concentrat ion of component  k; 
a r e  the diffusion coeff ic ients  in the c e n t e r - o f - m a s s  sy s t em:  
a re  the diffusion coeff ic ients  in the mole  - cen te r  sys t em;  
is the the rmal -d i f fus ion  coefficient  for  component  k in the c e n t e r - o f - m a s s  sy s t em;  

is the diffusion coefficient  for  a binary mix ture ;  
is the diffusion coefficient  of the k- th  component  in solvent M at infinite dilution; 

is the acce le ra t ion  due to gravi ty ;  
is the number  of componen t s ;  
m the m o l a r  m a s s  of component  k; 
is the mean  m o l a r  m a s s  of mix ture ;  
is the m o l a r  concentrat ion of mix ture ;  
xs the absolute t e m p e r a t u r e ,  
m the mean  t e m p e r a t u r e  in annulus; 
,s the t e m p e r a t u r e  d i f ference  a c r o s s  annulus; 
Is the mean  m o l a r  veloci ty  of mix ture ;  
Is the hydrodynamic  veloci ty  of component  k;  
is the mean  m a s s  flow ra te  of mix ture ;  
,s the mola r i ty  of component  k, 
Ls the height coordinate;  
,s the the rmal -d i f fus ion  constant  for  pa i r  k and i; 
is the t h e r m a l  diffusion constant  for  binary mix ture ;  
is the volume expansion coefficient of mixture ;  
~s the width of annulus; 
~s the Kronecker  symbol ;  
is the v i scos i ty ;  
,s the m a s s  concentrat ion of k-th component  in mix ture ;  
,s the densi ty of mix ture ;  
xs the m a s s  flow ra t e ;  
,s the m o l a r  flow ra te ;  
,s the m a s s  flow ra te  of component  k through column; 
is the m o l a r  flow ra te  of  component  k. 
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